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Abstract

We describe a method for analytically integrating, over a circular aperture,
the emission from an oscillating dipole inside a dielectric sphere. The model is
useful for investigating fluorescence, Raman, or other emission from molecules
inside spherical particles or droplets. The analysis is performed for two cases:
(1) the dipole emits from a fixed orientation, and (2) the dipole emits from
all orientations. In both cases, all light entering the aperture is collected. The
second case models the collection of emission from a molecule that is excited
repeatedly; after each excitation, it rotates to a random orientation before
emitting. These results are applicable to single-molecule detection techniques
employing microdroplets and to other techniques for characterizing micropar-
ticles through the use of luminescence or inelastic scattering.

ii



Contents

1 Introduction 1

2 The Sphere Dipole Fields and Aperture 3

3 Collection of Emission from a Fixed-Orientation Dipole 6

4 Collection of Emission from a Rotating Dipole 11

5 Summary 14

Acknowledgements 15

Appendices 17

A Computation of the P nm, πnm, and τnm Functions 17

B The Green Function 19

C Evaluation of Idot and Icross 21

D {PD} in a Homogeneous Medium 22

References 25

Distribution 31

Report Documentation Page 33

iii



1. Introduction

Collection of emission from molecules in, on, or near small particles is impor-
tant for a variety of applications: e.g., detection of single fluorescent molecules
in microspheres [1–6], characterization of particles or droplets using fluo-
rescence [7,8] or Raman [9] emission (the particles may be inhomogeneous
particles, as in a droplet containing viruses or bacteria), characterization of
lasing or nonlinear emission processes [10] or energy transfer [11] in micro-
spheres, determination of the orientation of molecules on the surface of a
droplet [12,13], and measurements of cavity quantum electrodynamic effects
in spheres [13–16]. Collection of light elastically scattered by inclusions in-
side droplets [17–19] is a related problem. The irradiance collected by a lens
depends on the position of the molecule(s) or scatterer(s) within the particle,
because light reflects and refracts at the particle surface.

Fluorescence and Raman emission from molecules inside spheres have been
modeled assuming the molecule can be approximated as an oscillating dipole
[20–23]. The fields of the dipole and the fields induced inside and outside
the sphere are expanded in spherical wave functions, and the expansion co-
efficients are determined by enforcement of the boundary conditions at the
sphere’s surface. Real molecules emit with a nonzero transition linewidth.
One can approximate the emission over the linewidth by averaging the out-
put over a lineshape function [22].

In earlier work [22,23], Hill et al calculated the collection of fluorescence from
a molecule, modeled as an oscillating dipole, using numerical integration over
a circular collection aperture. In experimental work, it is often important to
maximize the collection solid angle in order to maximize the signal. A prob-
lem arises when one uses numerical integration over the aperture: as the
solid angle of the collection aperture increases, the number of points needed
for accurate numerical integration can become prohibitive; the problem be-
comes worse as the size of the sphere increases. Problems with integrating
over large-solid-angle apertures become even more important in modeling
fluorescence or other emission in which the intensity must be integrated over
emission frequency [22,23], particularly when high Q morphology-dependent
resonances of the spheres are within the emission band.
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Methods have been developed for “analytically” integrating, over a circular
aperture, the scattering from a sphere illuminated with one or more plane
waves [24–30]. In those methods, the integration computations are performed
with recursion relations replacing the numerical integration scheme. Since nu-
merical integration is not required, the approach is referred to as “analytical.”
Advantages of the analytical method are that numerical results do not have
to be checked for convergence (as they must be when numerical integration
is used), and the analytical method can readily treat solid angles up to 4π sr.

In this report, we show that the emission from a dipole inside a spherical par-
ticle can be integrated analytically over a collection aperture. We consider
two cases: (1) emission from a dipole with fixed orientation, and (2) emission
from a dipole that rotates through all orientations. For case (2), we show how
the irradiance collected by the aperture can be obtained by analytical inte-
gration over all dipole orientations. The rotating dipole model is appropriate
for collection of fluorescent emission from a small molecule (e.g., laser dye)
in water, where the molecule is excited repeatedly. In integrating the emitted
irradiance over the circular aperture, we apply some of the techniques used
previously for scattering by spheres [24–30].

In section 2, we describe the situation to be modeled: the sphere, dipole,
electric fields, aperture, and coordinate systems. In section 3, we integrate the
irradiance over the circular aperture when the dipole is in a fixed orientation,
and provide (in eq (31)) a key result of this report: an explicit expression for
the power collected. In section 4, we integrate the collected intensity at the
aperture for a rotating dipole, and provide the results in equation (43). We
summarize our work in section 5. Four appendices provide mathematical
details.
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2. The Sphere Dipole Fields and Aperture

In this section we define the problem (sphere, dipole, aperture, fields) for
which we derive analytic solutions in sections 3 and 4. The region inside the
sphere, region 1 with refractive index N1, is assumed to be homogeneous,
except for one or more oscillating dipoles. The effect of any dipole (molecule)
on the absorption of emission from other dipoles is included in the homoge-
neous refractive index of the sphere. The region outside the sphere, region 2
with refractive index N2, is infinite and homogeneous, except for the circu-
lar aperture and lens, which are far from the sphere. The wavenumbers are
k0 = ω/c in vacuum, k1 = N1k0 in region 1, and k2 = N2k0 in region 2.

An (x, y, z) Cartesian coordinate system with basis vectors (x̂, ŷ, ẑ) is located
with its origin at the center of the sphere. The spherical system associated
with the (x, y, z) Cartesian system is the (r, θ, φ) system with basis vectors
(r̂, θ̂, φ̂). The z-axis, by definition, extends through the center of the circular
aperture. An oscillating dipole p, with exp(−iωt) time variation, is located
at rd, and the orientation of the x-axis can be defined with respect to rd. We
do this by giving the results in a form that holds for any chosen orientation
of the x-axis.

The coordinates of rd in the spherical system are (rd, θd, φd). The half-plane
containing the z-axis and rd is at an angle of φd from the x-axis, and the
choice of φd has the effect of locating the x-axis with respect to rd. We give
the results in a general form that holds for any value of φd.

Typically, an incident electromagnetic wave would be required to excite the
dipole [20] (molecule), although there are exceptions: e.g., chemiluminescence
and emission of thermal photons. We do not treat the problem of excitation
of the dipole here. Methods of calculating the internal fields of spheres illu-
minated with plane waves [20,31,32], counterpropagating plane waves [23],
or Gaussian beams [33,34] are well understood. For a molecule with a rota-
tional diffusion time that is short compared to its average emission time, the
excitation and emission problems can be separated (as described elsewhere
[23]).

The electric field produced at r in region 2 by dipole p at rd in region 1 can
be expressed as

E(r) = ω2µ2 G(r, rd)·p(rd), (1)
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where G(r, rd) is a dyadic Green function [35] for a source inside a sphere,∗

written here as

G(r, rd) =
ik2µ2

4πµ1

∞∑
n=1

2

n(n+ 1)

n∑
m=−n

(−1)m
[
cnM

(3)

nm(k2r)M
(1)

n,−m(k1rd)

+ dnN
(3)

nm(k2r)N
(1)

n,−m(k1rd)
]
. (2)

The cn and dn are the internal field coefficients for region 1 as defined by

Bohren and Huffman [31]. The M
(q)

nm and N
(q)

nm are the complex normalized
vector spherical harmonics [36]

M
(q)

nm(kr) ≡ ∇×
(
rz(q)
n (ρ) exp(imφ) P nm(cos θ)

)
(3a)

= iz(q)
n (ρ) exp(imφ)

[
θ̂ πnm(cos θ) + iφ̂τnm(cos θ)

]
, (3b)

N
(q)

nm(kr) ≡ 1

k
∇×M

(q)

nm(kr) (4a)

= exp(imφ)
[
r̂n(n+ 1)

z(q)
n (ρ)

ρ
P nm(cos θ)

+
(d/dρ)

(
ρz(q)

n (ρ)
)

ρ

(
θ̂ τnm(cos θ) + iφ̂πnm(cos θ)

) ]
, (4b)

where ρ ≡ kr, the z(q)
n (kr) are spherical Bessel functions jn(kr) when q = 1,

and are spherical Hankel functions h(1)
n (kr) when q = 3, and where

πnm(cos θ) =
mP nm(cos θ)

sin θ
, (5)

τnm(cos θ) = (d/dθ)P nm(cos θ), (6)

where the P nm(cos θ) are the normalized associated Legendre functions of
Arfken [37] and Belousov [38]. Computation of these functions is discussed
in appendix A.

∗The Green function shown here can be obtained following the approach of Tai [35].
The notation of equation (1) differs from Tai’s notation in that it employs the complex
vector spherical harmonics (see app B). Tai does the problem for a dipole outside a sphere.
We used his approach to do the problem for a dipole inside a sphere.
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The dipole is p = pp̂, where p is the dipole magnitude and p̂ is a unit vector
in the direction of the dipole axis. The dipole direction p̂ is specified by the
Euler angles α and β (the φ and θ angles describing the dipole direction with
respect to the (x, y, z) system), such that

p̂ =
3∑
j=1

fj êj, (7)

where (ê1, ê2, ê3) = (x̂, ŷ, ẑ) and

f1 = sin β cosα, (8a)

f2 = sin β sinα, (8b)

f3 = cos β. (8c)

Using equations (1), (2), and (7), we can write the electric field at r generated
by a dipole at rd as

E(r) =Eref
∞∑
n=1

2i

n(n+ 1)

n∑
m=−n

3∑
j=1

fj

[
c jn,−m M

(3)

nm(kr) + djn,−m N
(3)

nm(kr)
]
, (9)

where

Eref ≡
(

p

4πε0

)(
(µ2)2

µ0µ1

)
k2(k0)2, (10)

c jn,−m ≡ (−1)mcnêj ·M(1)

n,−m(k1rd), (11)

djn,−m ≡ (−1)mdnêj ·N(1)

n,−m(k1rd). (12)

All the light emitted into the solid angle intercepted by the aperture is as-
sumed to be collected. The aperture extends from θmin to θmax and is circular
(0 ≤ φ ≤ 2π). The solid angle with θ ≤ θmin is covered by a concentric
aperture stop. With dΩ = sin θ dθ dφ, the aperture solid angle is

∆Ω =
∫ 2π

0

∫ θ=θmax

θ=θmin

dΩ = 2π[cos(θmin)− cos(θmax)]. (13)
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3. Collection of Emission from a Fixed-Orientation

Dipole

The radiant power collected by the aperture is

P =
∫

∆Ω
dΩ r2I(r), (14)

where the irradiance of the emitted light at r is

I(r) =
N2

2µ2c
|E(r)|2. (15)

Here, we use a dimensionless power collected by the aperture, PD, defined as

PD ≡
(k2)2

Iref
P, (16)

where Iref is the irradiance of a reference electromagnetic wave,

Iref =
N2

2µ2c
(Eref )

2, (17a)

=
1

8π

1

4πε0

(µ2)3

µ0(µ1)2
cp2(k2)3(k0)3. (17b)

In terms of the electric field, the dimensionless power collected is

PD =
∫

∆Ω
dΩ(k2)2r2 |E(r)|2

(Eref )2
. (18)

The aperture is in the far field of the sphere. As ρ2 ≡ k2r becomes large,
h(1)
n (ρ2) can be replaced by its asymptotic expression, (−i)n[exp(iρ2)]/iρ2,

and the M
(3)

nm(k2r) and N
(3)

nm(k2r) from equations (3b) and (4b) can be written

 M
(3)

nm(k2r)

N
(3)

nm(k2r)

 = (−i)n exp(iρ2)

ρ2

exp(imφ)

θ̂
 πnm(cos θ)

τnm(cos θ)

+ iφ̂

 τnm(cos θ)

πnm(cos θ)

 . (19)
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Because I(r) is inversely proportional to (ρ2)2 in the far field, PD is not a
function of r, the distance from the sphere’s center to a field point r on the
aperture.

Substituting equation (9) for E(r) into equation (18), simplifying the result
with the help of equation (19), and then integrating over φ from 0 to 2π,
leads to

PD = 8π
∞∑
n=1

∞∑
n′=1

min(n,n′)∑
m=−min(n,n′)

3∑
j=1

3∑
j′=1

fjfj′
[(
ψdotnn′,−m

)jj′
I
dot

nn′m +
(
ψcrossnn′,−m

)jj′
I
cross

nn′m

]
, (20)

where

(
ψdotnn′,−m

)jj′ ≡
(
c jn,−m c j

′∗
n′,−m + djn,−m dj

′∗
n′,−m

)
(−i)n (i)n

′

n(n+ 1)n′(n′ + 1)
, (21)

(
ψcrossnn′,−m

)jj′ ≡
(
c jn,−m dj

′∗
n′,−m + djn,−m c j

′∗
n′,−m

)
(−i)n (i)n

′

n(n+ 1)n′(n′ + 1)
, (22)

and

I
cross

nn′m ≡
∫ µmin

µmax

dµ (πnm(µ)τn′m(µ) + τnm(µ)πn′m(µ)) ,

=
[
−mP nm(µ)P n′m(µ)

]µmin

µmax
, (23)

where µ ≡ cos θ, µmin ≡ cos θmin, and µmax ≡ cos θmax, and

I
dot

nn′m ≡
∫ µmin

µmax

dµ (πnm(µ)πn′m(µ) + τnm(µ)τn′m(µ)) . (24)

The evaluation of I
dot

nn′m requires consideration of two cases. When n 6= n′,

I
dot

nn′m =

[
(−1)

[n(n+ 1)P nm(µ)
√

1− µ2τn′m(µ)− n′(n′ + 1)P n′m(µ)
√

1− µ2τnm(µ)]

n(n+ 1)− n′(n′ + 1)

]µmin

µmax

.

(25)

When n = n′, I
dot

nnm is obtained with the relation

I
dot

nnm =
[
(−1)P nm(µ)

√
1− µ2τnm(µ)

]µmin

µmax

+ n(n+ 1)Innm, (26)
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where

Innm ≡
∫ µmin

µmax

dµ
(
P nm(µ)

)2
,

=

P nm(µ)
√

1− µ2P n,m−1(µ)√
(n+m)(n−m+ 1)

µmin

µmax

+ Inn,m−1. (27)

The evaluation of the above integrals is discussed in appendix C.

The expression for the power collected, equation (20), can be simplified fur-
ther: First, we use the general result,

M∑
m=−M

Fm =
M∑
m=0

εm
1

2
(Fm + F−m) , (28)

where εm is the Neumann function defined as ε0 = 1 and εm = 2 for m 6= 0;
second, we use the relations

I
dot

nn′,−m = I
dot

nn′m, (29a)

I
cross

nn′,−m = −I
cross

nn′m. (29b)

Equations (29) above are obtained with

P n,−m(µ) ≡ (−1)mP nm(µ), (30a)

πn,−m(µ) = (−1)m+1πnm(µ), (30b)

τn,−m(µ) = (−1)mτnm(µ), (30c)

which follow from the function definitions. Using equations (20) and (28) to
(30), we obtain our final result for the normalized power analytically inte-
grated over the aperture:

PD = 4π
∞∑
n=1

∞∑
n′=1

min(n,n′)∑
m=0

εm

Idotnn′m

3∑
j=1

3∑
j′=1

fjfj′
[(
ψdotnn′m

)jj′
+
(
ψdotnn′,−m

)jj′]

− I
cross

nn′m

3∑
j=1

3∑
j′=1

fjfj′
[
(ψcrossnn′m)jj

′ −
(
ψcrossnn′,−m

)jj′] . (31)
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The sums over fjfj′
(
ψdotnn′m

)jj′
and fjfj′ (ψ

cross
nn′m)jj

′
are

3∑
j=1

3∑
j′=1

fjfj′
(
ψdotnn′m

)jj′
=

(−i)n(i)n
′

n(n+ 1)n′(n′ + 1)

×
[(∑

j

fjc
j
nm

)(∑
j′
fj′c

j′

n′m

)∗

+

(∑
j

fjd
j
nm

)(∑
j′
fj′d

j′

n′m

)∗]
, (32)

and

3∑
j=1

3∑
j′=1

fjfj′ (ψ
cross
nn′m)jj

′
=

(−i)n(i)n
′

n(n+ 1)n′(n′ + 1)

×
[(∑

j

fjc
j
nm

)(∑
j′
fj′d

j′

n′m

)∗

+

(∑
j

fjd
j
nm

)(∑
j′
fj′c

j′

n′m

)∗]
, (33)

where the sums can be expanded as

3∑
j=1

fjc
j
nm = (−1)mcn

[
3∑
j=1

fj êj ·M(1)

nm

]
(34a)

= (−1)mcnjn(ρd)i exp(imφd)

[[
sin β cos θd cos (α− φd)

− cos β sin θd
]
π̄nm(cos θd)

+ sin β sin (α− φd)iτ̄nm(cos θd)

]
, (34b)
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and

3∑
j=1

fjd
j
nm = (−1)mdn

 3∑
j=1

fj êj ·N(1)

nm

 (35a)

= (−1)mdn exp(imφd)

[[
sin β cos θd cos(α− φd)− cos β sin θd

]

× n(n+ 1)
jn(ρd)

ρd
Pnm(cos θd) +

([
sin β cos θd cos (α− φd)

− cos β sin θd
]
τ̄nm(cos θd)

)

+ sin β sin (α− φd)iπ̄nm(cos θd)×
(

1

ρd

d(ρdjn(ρd))

dρd

)]
. (35b)

To evaluate the terms with −m, i.e.,
(
ψdotnn′,−m

)jj′
and

(
ψcrossnn′,−m

)jj′
in equation

(31), we rewrite equations (32) to (35) with m→ (−m). Then equations (30)
are used to evaluate the rewritten versions of equations (34) and (35).
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4. Collection of Emission from a Rotating Dipole

A fluorescent molecule in a low-viscosity liquid may, after absorbing a photon,
rotate many times before emitting a photon. For example, the rotational
diffusion time for R6G in water is a few picoseconds, while the average time
before emission is ∼3 ns. In cases where the collection time is much longer
than 3 ns, many photons are emitted in all directions from a rapidly rotating
molecule as the fluorescence is collected, and we can obtain the resulting
signal by averaging over all orientations of the rotating molecule.

Any function g(α, β), where α and β are the Euler angles, can be averaged
over orientations with the expression

{g(α, β)} ≡ 1

4π

∫ 2π

α=0
dα
∫ 2π

β=0
dβ sin β g(α, β). (36)

We substitute fjfj′ for g(α, β) in this equation, use the definitions of equa-
tions (8), and evaluate the integrals to give

{fjfj′} =
1

3
δjj′ , (37)

where δjj′ is the Kronecker delta function.

We obtain the portion of the dimensionless power (emitted by a randomly
rotating dipole) that is collected by the aperture {PD}, by averaging PD
(given in eq (31)) over all dipole orientations. By using equations (36) and
(37), we find the result to be

{PD} =
4π

3

∞∑
n=1

∞∑
n′=1

min(n,n′)∑
m=0

εm

[
I
dot

nn′m

3∑
j=1

[(
ψdotnn′m

)jj
+
(
ψdotnn′,−m

)jj]

− I
cross

nn′m

3∑
j=1

[(
ψcrossnn′m

)jj − (ψcrossnn′,−m
)jj]]

. (38)

Evaluating the sums over j gives

3∑
j=1

(
ψdotnn′m

)jj
=

3∑
j=1

(
ψdotnn′,−m

)jj
= Ψdot

nn′m, (39)
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and
3∑
j=1

(ψcrossnn′m)jj = −
3∑
j=1

(
ψcrossnn′,−m

)jj
= Ψcross

nn′m + Ψcross∗
n′nm , (40)

where

Ψdot
nn′m ≡

(
cnc
∗
n′ M

(1)

nm(krd) ·M(1)∗
n′m(krd) + dnd

∗
n′ N

(1)

nm(krd) ·N(1)∗
n′m(krd)

)
× (−i)n (i)n

′

n(n+ 1)n′(n′ + 1)
, (41)

Ψcross
nn′m ≡

(
cnd
∗
n′ M

(1)

nm(krd) ·N(1)∗
n′m(krd)

)
(−i)n(i)n

′

n(n+ 1)n′(n′ + 1)
. (42)

The symmetry operation of interchanging the summation indices n and n′ in
Ψcross∗
n′n,m then allows equation (38) to be rewritten as

{PD} =
8π

3

∞∑
n=1

∞∑
n′=1

min(n,n′)∑
m=0

εm
[
Ψdot
nn′m I

dot

nn′m − [2 Re (Ψcross
nn′m)] I

cross

nn′m

]
. (43)

The radiant power of the collected emission from a sphere containing a ro-
tating dipole is then computed with the relation

{P} =
Iref
(k2)2

{PD}. (44)

In previous work [22,23], it was convenient to use the normalized fluorescence
collected F (rd, ω), which is the fluorescence collected from a dipole in a sphere
normalized by the fluorescence collected from a dipole in a homogeneous
medium, i.e.,

F (rd, ω) ≡ {P}
{P} hom

. (45)

To calculate {P}hom, we set the medium of the sphere identical to that of
the surrounding medium (i.e., N1 = N2 and µ1 = µ2). We show in appendix
D that {PD}hom = (2/3)∆Ω, so that

{P}hom =

(
Iref
(k2)2

)(
2∆Ω

3

)
(46)
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for any ∆Ω and for any position of the dipole within the sphere. The nor-
malized power collected by the aperture is then

F (rd, ω) =
4π

∆Ω

∞∑
n=1

∞∑
n′=1

min(n,n′)∑
m=0

εm
[
Ψdot
nn′m I

dot

nn′m − [2 Re (Ψcross
nn′m)] I

cross

nn′m

]
. (47)
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5. Summary

We have developed analytical expressions for the power entering a collecting
aperture after emission from a dipole inside a spherical particle or droplet.
The key results of this report are equations (31) and (43): equation (31) gives
the power collected by an aperture when the dipole is in a fixed orientation,
and equation (43) gives the power collected by the aperture when the emission
is integrated over all dipole orientations.

The results should be useful in modeling experiments in which fluorescence
or other emission from molecules inside, on, or near the surface of a sphere
is measured. The results for integrating over dipole orientation are useful for
modeling a dipole (at a fixed position) when the rotational diffusion time is
much smaller than the fluorescence lifetime of the molecule, which in turn is
much smaller than the collection time for the experiment; in such an exper-
iment, the molecule absorbs and emits many photons from many different
random orientations. An advantage of performing the integrations over the
aperture analytically is that one need not test the results for convergence
when the size, refractive index, or numerical aperture increase. We suggest
that the results presented here may be particularly useful for cases in which
the results must be integrated over a large wavelength range and the sphere
is in a size range where narrow morphology-dependent resonances strongly
influence the emission.
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Appendix A. Computation of the Pnm, πnm, and τnm
Functions

The πnm(µ) and τnm(µ) functions are defined here as

πnm(µ) ≡ mP nm(µ)√
1− µ2

, (A-1)

τnm(µ) ≡ −
√

1− µ2(d/dµ)P nm(µ), (A-2)

where P nm(µ) is the normalized associated Legendre function defined by
Arfken [37] and Belousov [38] as

P nm(µ) ≡ AnmPnm(µ), (A-3)

where

Anm ≡
√√√√(2n+ 1)(n−m)!

2(n+m)!
, (A-4)

and

Pnm(µ) = (1− µ2)m/2
dm

dµm
Pn(µ) (A-5)

is the associated Legendre function as defined by Arfken [37] and Stratton
[39] and used in the standard light scattering references by Bohren and Huff-
man [31] and van de Hulst [40]. These Legendre functions differ by a factor
of (−1)m from the Legendre functions used by Jackson [41], Abramowitz and
Stegun [42], and Gradshteyn and Ryzhik [43]. These last two references are
of particular interest for their extensive recursion relations, but care must
be exercised because of the (−1)m factor difference. The πnm and τnm func-
tions are defined here to agree with Fuller’s definitions [44], except with an
additional factor of Anm. There is a computational advantage to using nor-
malized Legendre functions, because the factorials in Anm do not have to be
computed separately but are incorporated into the recursion relations.
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We can obtain two relations convenient for computing P nm(µ), πnm(µ), and
τnm(µ) by rewriting equations (8.733) given by Gradshteyn and Ryzhik [43]
as

µπnm(µ) =

(
1

2

)[√
(n−m+ 1)(n+m)P n,m−1(µ)

+
√

(n+m+ 1)(n−m)P n,m+1(µ)

]
, (A-6)

τnm(µ) =

(
1

2

)[√
(n−m+ 1)(n+m)P n,m−1(µ)

−
√

(n+m+ 1)(n−m)P n,m+1(µ)

]
. (A-7)

If µ 6= 1, then equation (A-1) is used to compute πnm(µ) from P nm(µ), and
the above two relations are used to compute P n,m+1(µ) and τnm(µ).

If µ = 1, then

P nm(1) =

√
(2n+ 1)

2
δm,0, (A-8)

and equations (A-6) and (A-7) become

πnm(1) =
1

2

√
(2n+ 1)n(n+ 1)

2
(δm,1 + δm,−1) , (A-9)

τnm(1) =
1

2

√
(2n+ 1)n(n+ 1)

2
(δm,1 − δm,−1) . (A-10)
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Appendix B. The Green Function

Using the traditional vector spherical harmonics, Tai [35] writes the equations
necessary to solve for the Green functions when the dipole is outside the
sphere. Tai [35] does not explicitly give the results for his coefficients An,
Bn, Cn, and Dn. However, when his equations are solved, his upper case
coefficients can be seen to be related to the lower case sphere coefficients of
Bohren and Huffman [31], as

An = −bn,
Bn = −an,
Cn = cn,

Dn = dn.

(B-1)

The Green functions for a dipole inside the sphere can be obtained with
essentially the same approach used by Tai [35] for the external dipole, and
we obtain the result for the region outside the sphere as

G(r, rd) =
ik2µ2

4πµ1

∞∑
n=1

2

n(n+ 1)

n∑
m=0

εm(Anm)2
∑
σ=e,o

[
cn M(3)

σmn(k2r) M(1)
σmn(k1rd)

+ dnN
(3)
σmn(k2r) N(1)

σmn(k1rd)
]
. (B-2)

To rewrite this result with our vector spherical harmonics (eq (3b) and (4b)),
we note that they are related to the traditional ones [31,32,39] by the relations

AnmM(q)
emn =

1

2

(
M

(q)

nm + (−1)mM
(q)

n,−m

)
, (B-3)

AnmM(q)
omn =

1

2i

(
M

(q)

nm − (−1)mM
(q)

n,−m

)
, (B-4)

A(q)
nmNemn =

1

2

(
N

(q)

nm + (−1)mN
(q)

n,−m

)
, (B-5)

AnmN(q)
omn =

1

2i

(
N

(q)

nm − (−1)mN
(q)

n,−m

)
, (B-6)

where Anm is defined in equation (A-4).
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Using equations (B-3) to (B-6) we rewrite the Green function as

G(r, rd) =
ik2µ2

4πµ1

∞∑
n=1

1

n(n+ 1)

n∑
m=0

εm(−1)m

×
[
cn
(
M

(3)

nm(k2r) M
(1)

n,−m(k1rd) + M
(3)

n,−m(k2r) M
(1)

nm(k1rd)
)

+ dn
(
N

(3)

nm(k2r) N
(1)

n,−m(k1rd) + N
(3)

n,−m(k2r) N
(1)

nm(k1rd)
)]
. (B-7)

Then using the general relation for sums given in equation (28), we obtain

G(r, rd) =
ik2µ2

4πµ1

∞∑
n=1

2

n(n+ 1)

n∑
m=−n

(−1)m

×
[
cn M

(3)

nm(k2r) M
(1)

n,−m(k1rd) + dnN
(3)

nm(k2r) N
(1)

n,−m(k1rd)
]
. (B-8)
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Appendix C. Evaluation of Idot and Icross

The result for I
cross

nn′m given in equation (23) in the body of the report is
obtained by inspection.

We can prove the expressions for I
dot

nn′m (eq (25) to (27)) by taking the deriva-
tive with respect to µ of both sides of the equations, and then using equations
(A-1) and (A-2). Equation (27) can be proved with the help of

P n,m−1(µ) =
µπnm(µ) + τnm(µ)√
(n+m)(n−m+ 1)

, (C-1)

which we obtain by adding equations (A-6) and (A-7). It is also helpful to
know that the differential equation for the associated Legendre function can
be written as

d

dµ

(√
1− µ2τnm(µ)

)
= n(n+ 1)P nm(µ)− mπnm(µ)√

1− µ2
. (C-2)
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Appendix D. {PD} in a Homogeneous Medium

To check the derivations and to obtain a value for normalization, we set the
medium of the sphere identical to the medium surrounding the sphere (i.e.,
N1 = N2 and µ1 = µ2, where both N1 and N2 are real). Then equation (43)
can be shown to give the result {PD} = (2/3)∆Ω for any ∆Ω and for any
position of the dipole within the sphere. We start with a proof for ∆Ω = 4π,
and extend that result with an intuitive argument to arbitrary ∆Ω.

If N1 = N2 and µ1 = µ2, then cn = dn = 1. Further, if ∆Ω = 4π, then

I
dot

nn′m = n(n+ 1)δnn′ and I
cross

nn′m = 0, so that equation (43) becomes

{PD}∆Ω=4π
hom =

8π

3

∞∑
n=1

n∑
m=0

εm
(
|M(1)

nm(k1rd)|2 + |N(1)

nm(k1rd)|2
)

n(n+ 1)
. (D-1)

Because N1 is real here, ρd ≡ k1rd is also real. This allows the |M(1)

nm(k1rd)|2
and |N(1)

nm(k1rd)|2 to be written as

|M(1)

nm(k1rd)|2 = (jn(ρd))
2
(
[πnm(cos θd)]

2 + [τnm(cos θd)]
2
)
, (D-2)

|N(1)

nm(k1rd)|2 = n2(n+ 1)2

(
jn(ρd)

ρd

)2 (
P nm(cos θd)

)2

+

(
(d/dρd) (ρd jn(ρd))

ρd

)2 (
[πnm(cos θd)]

2 + [τnm(cos θd)]
2
)
. (D-3)

The addition theorem for spherical harmonics given by Arfken (eq (12.197),
p 694) [37] can be rewritten as

n∑
m=0

εm
(
P nm(cos θd)

)2
=

2n+ 1

2
, (D-4)

and a summation over vector-spherical harmonics given by Jackson (eq (16.77),
p 753) [41] can be rewritten as

n∑
m=0

εm

[
(πnm(cos θd))

2 + (τnm(cos θd))
2
]

=
(2n+ 1)n(n+ 1)

2
, (D-5)
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so that

{PD}∆Ω=4π
hom =

4π

3

∞∑
n=1

(2n+ 1)

[(
jn(ρd)

)2
+ n(n+ 1)

(
jn(ρd)

ρd

)2

+

(
(d/dρd)(ρdjn(ρd))

ρd

)2]
. (D-6)

The Rayleigh equation (Arfken [37], p 665) gives

exp(iρdµ) =
∞∑
n=0

in(2n+ 1)jn(ρd)Pn(µ), (D-7)

where Pn(µ) is a Legendre polynomial. Multiplying each side of equation
(D-7) by its complex conjugate and integrating over µ from −1 to 1 gives

∞∑
n=1

(2n+ 1) (jn(ρd))
2 = 1− (j0(ρd))

2 . (D-8)

The Rayleigh equation can be used in essentially the same way to obtain the
result

∞∑
n=1

(2n+ 1)

(
(d/dρd) (ρdjn(ρd))

ρd

)2

=
1

3
+

1

(ρd)2
−
(

(d/dρd) (ρd j0(ρd))

ρd

)2

. (D-9)

By using the differential equation of the Legendre polynomial and the Rayleigh
equation (D-7), and then multiplying and integrating as before, one can ob-
tain the result

∞∑
n=1

(2n+ 1)n(n+ 1)

(
jn(ρd)

ρd

)2

=
2

3
. (D-10)

Recalling that j0(ρd) = [sin(ρd)]/ρd then allows these three sums to be com-
bined to give the exact result

{PD}∆Ω=4π
hom =

8π

3
. (D-11)

Because the emission from a randomly rotating dipole in a homogeneous
medium is isotropic in the far field, the power {PD} collected by an aperture
solid angle ∆Ω in the far field is simply proportional to ∆Ω. Then

{PD}hom =
(

8π

3

)(
∆Ω

4π

)
=

2

3
∆Ω (D-12)

is an exact result for all ∆Ω .
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